Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids.
نویسندگان
چکیده
BACKGROUND AND AIMS Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycorrhizae used by Pheladenia deformis, one of the few orchid species to occur across the Australian continent. Specifically, it examines whether P. deformis is widely distributed through using multiple fungi or a single widespread fungus, and if the fungi used by Australian orchids are widespread at the continental scale. METHODS Mycorrhizal fungi were isolated from P. deformis populations in eastern and western Australia. Germination trials using seed from western Australian populations were conducted to test if these fungi supported germination, regardless of the region in which they occurred. A phylogenetic analysis was undertaken using isolates from P. deformis and other Australian orchids that use the genus Sebacina to test for the occurrence of operational taxonomic units (OTUs) in eastern and western Australia. KEY RESULTS With the exception of one isolate, all fungi used by P. deformis belonged to a single fungal OTU of Sebacina. Fungal isolates from eastern and western Australia supported germination of P. deformis. A phylogenetic analysis of Australian Sebacina revealed that all of the OTUs that had been well sampled occurred on both sides of the continent. CONCLUSIONS The use of a widespread fungal OTU in P. deformis enables a broad distribution despite high mycorrhizal specificity. The Sebacina OTUs that are used by a range of Australian orchids occur on both sides of the continent, demonstrating that the short-range endemism prevalent in the orchids is not driven by fungal species with narrow distributions. Alternatively, a combination of specific edaphic requirements and a high incidence of pollination by sexual deception may explain biogeographic patterns in southern Australian orchids.
منابع مشابه
Limitations on orchid recruitment: not a simple picture.
Mycorrhizal fungi have substantial potential to influence plant distribution, especially in specialized orchids and mycoheterotrophic plants. However, little is known about environmental factors that influence the distribution of mycorrhizal fungi. Previous studies using seed packets have been unable to distinguish whether germination patterns resulted from the distribution of appropriate edaph...
متن کاملIndependent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids.
We have investigated the mycorrhizal associations of two nonphotosynthetic orchids from distant tribes within the Orchidaceae. The two orchids were found to associate exclusively with two distinct clades of ectomycorrhizal basidiomycetous fungi over wide geographic ranges. Yet both orchids retained the internal mycorrhizal structure typical of photosynthetic orchids that do not associate with e...
متن کاملLimited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids.
PREMISE OF THE STUDY In addition to autotrophic and fully mycoheterotrophic representatives, the orchid family comprises species that at maturity obtain C and N partially from fungal sources. These partial mycoheterotrophs are often associated with fungi that simultaneously form ectomycorrhizas with trees. This study investigates mycorrhizal nutrition for orchids from the southwestern Australia...
متن کاملIdentity and Specificity of Rhizoctonia-Like Fungi from Different Populations of Liparis japonica (Orchidaceae) in Northeast China
Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae) is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction...
متن کاملDeception above, deception below: linking pollination and mycorrhizal biology of orchids.
Several key characteristics of the species-rich orchid family are due to its symbiotic relationships with pollinators and mycorrhizal fungi. The majority of species are insect pollinated and show strong adaptations for outcrossing, such as pollination by food- and sexual-deception, and all orchids are reliant on mycorrhizal fungi for successful seedling establishment. Recent studies of orchid p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of botany
دوره 116 3 شماره
صفحات -
تاریخ انتشار 2015